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Abstract

The second-order factorizable discretization of

the compressible Euler equations developed by

Sidilkover is extended to conservation form on gen-

era� curvilinear body-fitted grids. The discrete

equations are solved by symmetric collective Gauss-

Seidel relaxation and FAS multigrid. Solutions for

flow in a channel with Mach numbers ranging from

0.0001 to a supercritical Mach number are shown,

demonstrating uniform convergence rates and no

loss of accuracy in the incompressible limit. A so-

lution for the flow around the leading edge of a

semi-infinite parabolic body demonstrates that the

scheme maintains rapid convergence for a flow con-

tiiining a stagnation point.

Introduction

Steady inviscid flow is described by the Euler equa-

tions, which can be thought, of as two snbsystems. One

subsystem corresponds to the equations governing en-

tropy and vorticity advection. This subsystem is hyper-

bolic in space. The other subsystem corresponds to a full

potential operator, which is elliptic for subsonic flow and

hyperbolic for supersonic flow. For a purely supersonic

flow, space marching is the most efficient way of solving

the Euler equations. For subsonic flow, the ellipticity of

error corresponding to advection factor. This same diffi-

culty is true for high Reynolds-number viscous flows as
well.

As has been pointed out by Brandt 1, to obtain ideal

multigrid convergence rates for subsonic, inviscid flows,

the discretization nmst distinguish those parts of the dif-

ferential operator which correspond to advection, and

those which correspond to elliptic behavior. The advec-

tion terms are treated efficiently by marching and the el-

liptic terms are rapidly solved with a multigrid iteration.

Brandt 1 argams that by spfitting the system into its ellip-

tic and advection parts, the convergence rate of the full

system ought to be equal to the slowest of the two sub-

systems. Using this approach, Brandt and Yavneh have

demonstrated textbook multigrid for the incompressible

Navier-Stokes equations 2. Their results are for a simple

geometry and a Cartesian grid, using a staggered-grid

discretization of the equations. In a closely related ap-

proach, Ta'asan 3 presented a fast multigrid solver for the

compressible Euler equations. This method is based on

a set of "canonical variables" which express the stead),

Euler equations in terms of an elliptic and a hyperbolic

partition 4. In Reference 3 it. is shown that ideal multi-

grid efficiency can be achieved for the compressible Euler

equations for two-dimensional subsonic flow using body-

fitted grids.
the full potential factor should be effectively handled by

multigrid. However multigrid is not effective for advec- In an earlier work 5' 6, the authors presented a multi-

tion operators, as the coarse grid only gives part of the grid scheme for the steady, incompressible Euler equa-

correction for certain smooth components of the error.

Existing multigrid methods for subsonic and transonic

flow rely on the coarse grid to smooth the entire system.

As such, they are fundamentally limited by the ineffec-

tiveness of the coarse grid in correcting the part of the
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tions based on a pressure Poisson discretization which

distinguishes the advection operator from the elliptic

part of the system of equations. Both structured grid

and unstructured grid flow solvers were written using

the discretization. The results in Ref. 5 demonstrated

that the scheme can achieve ideal multigrid convergence
rates for internal flows. The scheme has been extended

to three dimensions by Sanchez 7, who has also demon-

strated ideal multigrid convergence rates for internal

flows. This approach has the advantage of non-staggered

grids--a collocated, vertex-based discretization of the

equations is used, simplifying the restriction and prolon-

gation operations and allowing the use of simple point

collective Gauss-Seidel relaxation. Although the pres-



surePoissonapproachmaybeextendedtocompressible
flows,it.isnotconservativeandisunsuitedforsuper-
criticalflowswithshocks.Furthermore,theextension
toviscousflowsislimitedto tileincompressibleNavier-
Stokesequations.

Recently,Sidilkover8 hasdeviseda discretizationof
thecompressibleflowequationsthat.overcomesthese
limitations.Thisdiscretizationmaybeappliedto the
Eulerequationsinconservativeform,usingthemultidi-
mension;dupwindschemeofSidilkover9' 10.In Ref.10
it isshownthatthisapproachshouldleadtoa scheme
thatis factorizable,i.e.,theschemedistinguishesbe-
tweenthosepartsoftheoperatorthatrepresent,advec-
tion,andthatpartof the operator that. represents po-

tential flow. In Ref. 8, such a factorizable scheme is

constructed for Cartesi,'m grids. Because the diseretiza-

tion is stable for Gauss-Seidel relaxation, it the conver-

gence rate does not depend upon a Courasat-Friedrich-

Lewy number restriction, unlike standard discretizations

of the Euler equations which must use time marching.

For this reason, the same convergence rate is obtained

for subsonic Mach numbers all the way to the incom-

pressible limit. The scheme may be written in the form

of a central-difference part plus an artificial viscosity.

As such, it is very similar in formulation to standard

upwind, finite-vohune discretizations for the Euler and

Reynolds-Averaged Navier-Stokes equations, and can be

written as a conventional upwind scheme with a modi-

fied artificial dissipation. Sidilkover 8 shows that for the

discrete scheme to preserve factorizability the dissipation

terms must be discretized in a specific way. In addition,

he shows that the artificial viscosity may be rescaled with

the Mach number such that the factorizability, and thus

the accuracy, as well as the h-ellipticity of the operator

is preserved ix, the incompressible limit.

In the present work, the generalization of Sidilkover's

factorlzable scheme to curviIinear, body-fitted coordi-

nates is presented. First., the governing equations are

presented, including the form of the multidimensional

upwind artificial dissipation. It. is shown how the dissi-

pation terms must be discretized to maintain factorlz-

ability. A discussion of the point collective Gauss-Seidel

relaxation is presented next. Solutions for flow in a chan-

nel_ with infetl _Iach numbers ranging from 0.0001 to

a supercritical Mach number are shown, demonstrating

the accuracy and convergence rates of the scheme. An

additional computation for the flow around the leading

edge of a semi-infinite parabola demonstrates that the

current scheme does not suffer from the convergence dif-

ficulties near a stagnation point that were observed for

the authors' previous scheme 11

Mathematical Formulation

The artificial dissipation of the factorizable schemc

can be described hy first presenting the modified equa-

tion, or first differential approximation (FDA), of the

discrete scheme. This is the differential equation which

is found by expmlding the difference equation in a Taylor

series about each grid vertex and considering the lead-

ing terms of the truncation error. These terms are the

artificial dissipation of the scheme.

The starting point fox" the scheme is the two-

dimensional Euler equations in non-conservation form.

Let p be the density, ff = _u + jr, be the velocity, and p

be the pressure. The entropy s is defined as

where p0 and po are a reference pressure and density,

respectively, and "_ is the ratio of the specific heats.

Then the Euler equations may be written in the vari-

ables (s, u, v,p):

a.Vs = 0, (2a)

ff-Vz7 + 1Vp = 0, (2b)
P

pc2V.a + ff.Vp = 0. (2c)

The factorizability of the scheme depends on the form

of the artificial dissipation added to this system of equa-

tions.

The entropy is only weakly coupled to the momen-

tum and the pressure equations through the equation

of state (1). In fact, the entropy equation corresponds

to one of the advection factors of the Euler equations.

Therefore, it may be discretized independently of the

momentum and pressure equations in any appropriate

way without affecting the factorizability of the scheme.

The advection operator ff.V uses simple upwind differ-

encing in Eq. (2a). Let (,_, r/) be a general curvilinear

coordinate system and define the contravariant compo-

nents of the velocity, (U, F') by the transformation

(;: ;,9
In this coordinate system g.Vt7 = (?O_ + f'O,. The equa-

tions are discretized on a uniform grid in (¢,t/) space,

with a grid spacing A¢ = ATI = 1. The FDA of the

first-order upwind difference approximation to tT.V is

1 1 .=
(4)

and the entropy equation is discretized as

qs = 0. (5)

A second-order upwind discretization of the adveetion

operator has also been used in Eq. (5). However, for

the particular cases shown below the use of a second-

order advection operator has an insignificant attect on

the computed results. This point, is discussed in the Re-

sults section.

The dissipation for the momentum and pressure equa-

tions, Eqs. (2b) and (2c), is the umltidimensional upwind
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dissipationof Sidilkover 9. In vector notation, this dissi-

pation is written as

a.va+ 1-vp-  "'ev (p 2v.a+a.vp) =0, (6)
p 2pc

pc2_7.ff+ff.Vp --pc-_.(_._ff+ _Vp) =0, (7)

where c is the speed of sound, am and ap are scaling

coefficients, and ( is a length scale proportional to the

grid spacing. Note that the dissipation of the momen-

tum equation is tile gradient of the pressure equation

residual, and the dissipation of the pressure equation is

the divergence of the momentum equation residual. It

is this property of the artificial dissipation that leads to

a factorizable scheme. Note that ttle curl of Eq. (6) is

identical to the curl of Eq. (2b), i.e., vorticity equation of

the governing Euler equations is unaffected by the arti-

ficial dissipation. The vortieity equation corresponds to

the second adveetion factor of the Euler equations. Sim-

ilarly, because the dissipation of Eq. (7) is the divergence

of the momentum equation, it is affected only by tile Jr-

rotational part of the velocity field but not the solenoidal

part. The irrotational part may be written as the gradi-

ent of a potential. As the pressure equation Eq. (2e) is

a form of the continuity equation, it corresponds to the

full potentiM factor, and the FDA described by Eq. (7)

preserves this property.

If the advection operator, pressure gradient, and di-

vergence terms in Eqs. (6) and (7) are discretized us-

ing central differences, the scheme is second-order accu-

rate and factorizable. However, such a scheme is not

h-elliptic. This lack of h-ellipticity is a result of the

central difference approximation to the advection term

in the momentum equation, Eq. (6). Sidilkover shows

that this advection operator corresponds to vorticity

advection 8. Replacing this operator by the first-order

upwind approximation in Eq. (4) restores h-ellipticity

and the scheme remains factorizable, but it. now becomes

only first-order accurate. Note that the pressure advec-

tion term in Eq. (7) continues to be approximated by
second-order central differences.

To obtain second-order accuracy while maintaining

h-ellipticity, appropriate antidissipative term_ nmst be

added to the momentum equation in such a way that fac-

torizability is preserved. The form of these terms is de-

pendent upon the computational coordinates (_, Ii), and

they must be written in terms of the contravariant and

covariant components of the velocity vector. The covari-

ant. components are related to the physical components

by the transformation

*, y,_ v = " (8)

W¥iting the advection operator in Eq. (6) in terms of

the covariant velocity components and ignoring terms

containing the higher-order geometric derivatives, the

scheme may be upgraded to nearly second-order by

adding the following corrections:

l l [_='l 0_0._', (9a)a-_"/O = qL/-4- 7 [(--?[05/at -'t-

1 1

The cross-derivative terms in Eq. (9) are necessary for

second-order accuracy and to retain factorizability at the

same time. Using Eq. (8) to find /at and _', the antidis-

sipative terms in Eq. (9a) and (9b) are evaluated, and

then rotated back into the physical components. This

gives a discretization of the form

/7.Vff = qa + VD (10)

where

D= GI (iCrlo,a + . (11)

The above expression is the generalization to curvilinear

coordinates of the one given in Ref. 8.

To gain more insight about, the nature of the correc-

tion terms, the FDA of Eq. (10) may be rewritten as

J

+vD= + .7(c' I '1 e"lC'l
where _o _ 0_t, - Ouu is the vorticity, J = av_y,7 - y{x,

is the Jacobian of the coordinate transformation, mM

(4e, gn) are the contravariant basis vectors in the ((, _/)
coordinate directions.* Note that. if the flow is irrota-

t.ional, then the first-order truncation error terms vanish

identically and the approximation becomes second-order

accurate.

It was pointed out above thai factorizalfility depends

upon the dissipation of the momentum equation being

written as the gradient of the pressure equation, and the

dissipation of the pressure equation being written as the

divergence of the momentum equation. Likewise, the
second-order correction to the adveetion terms must be

in the form of a gradient so that the vorticity equation

is is unaffected. With the definition in Eq. (10), taking

the curl of Eq. (6) yields q.0 = 0. Thus the advection

operator acting on the vorticity is unchanged from the

first-order scheme.

To get. full second-order accuracy it. is necessary to

use second-order accurate discretization of the advection

operator in the momentum equation. The FDA of an h-

elliptic, fully second-order upwind advection operator

quo = C0{ + _'0 n

1 IglO_+2sgn_'f'OeO,+_O,,] (12a)'2

when1 '1> lv'l and

qHO ----_0_ "k-VO,7

1 (C20_ ) (a2b)- 2 k _ + 2 sg,,t 7- c-o{o,, + lvl o,g

*dg_ = _Yn - dxn, ggn = __y¢ + jx_



when l_?[ < I_::[. With t.his advection operator in the

momentum equation, the quantity D in Eq. (11) must

be modified in order to preserve the factorizability of tile

scheme. This modified D is given by

Dm_ -= D + lsgn_" _" (O,L? + c3¢9)

( 13at

,,henIVl> I1"1and

DHC) = D -4- lsgn_> f-7 (O,7_ -4-O<V)

(13h)

when IUI < I% Taking tit(" curl of the momentum

equation now gives qno w = 0, i. e., the vorticity equa-

tion is now second-order accurate.

To see how the multidimensional upwind dissipation of

Eqs. (6), (7) and (9) is related to the standard first-order

upwind difference scheme, consider a uniform Cartesian

grid with equal spacing in the x and g directions. If the

scaling coefficients a,, and #v are taken to be one, f is

the grid spacing, and the cross-derivative terms in the

dissipation terms of Eqs. (6) and (7) are ignored, the

standard first-order upwind sdmme is obtained. The

first-order upwind scheme on a nonmfiform grid further

replaces (_" by g_.0_ + lyon, where f_ and (u are the grid

spacings in the two coordinate directions. The multidi-

mensional upwind scheme uses a single length scale, and

retains the cross-derivative terms. Consider the advec-

tion operator of Eq. (9) on a Cartesian grid. Dropping

the cross-derivative terms yields the standard first-order

upwind discretization.

Discretization

The factorizability of the FDA is a necessary condi-

tion for the factorizability of the difference scheme, but.

it is not sufficient. For the difference scheme to be fac-

torizat,le, the difference operators must commute in the

same way as the differential opera!ors 8. Introducing the

difference approximations to the partial derivative oper-

at, ors,

=0¢+..-, 0,7 =0,_+---,

4', =0_ +..., 0_,,=0_+...,

the following conditions must hold

• _h .-,h , h • h

cJ_cJ,m = OCnO_n

h h ,h ,h

The following difference operators satisfy this condition:

' '[i' i]= 0 , On =g 0 ,_ g o - -2 -

, ,[!,!] '[! !]o.=_ -4 , _,=_ - -4 - ,
-2 2

0_. _ 0-

Towrite the complete discrete scheme, the subscript h

is used to denote a standaxd difference to the corre-

sponding operator, and the addition of the overbar ( )

denotes the "wide" differences given above. The second-

difference expressions may be expressed in flux form by

taking a six-point difference centered on an edge between

two vertices, and then taking a two-point difference of

those expressions centered on a vertex. The subscripts e

and v are used to denote difference operators centered

on an edge or a vertex, respectively. The fully discrete

scheme is then written as

qhs = 0, (14at

p

= O, (14b)

p c2 _Z h . ff ___ ff ._ h p

. h- 1 (V__F,_)p) =0 ' (1@)

The derivatives in that part of DH-_ given in Eq. (ll)

are discretized using the wide, six-point difference stencil

for 0_/_ and 0_V. The additional terms of DHO and

the corresponding dissipation terms for the second-order

advection operator qHo must be discretized in a very

precise way, and depend upon the flow direction and

the relative magnitudes of Cr and V. The details are

described in Ref. 12 for uniform Cartesian grids. The

stencils for the general curvilinear grids are presented in

the appendix to this paper.

The scaling coefficients are

1

0-,_ = max(._/, Me), _rv - max(M, M_) (15)

where _I is the local Mach number, and /ff_ is a cutoff

Mach number to prevent division by zero. The cutoff is

chosen to be O(h), and essentially becomes active near

stagnation points. The purpose of the rescaling of the

pressure equation dissipation, crp, is to prevent the ellip-

tic factor in the discrete equations from becoming the

skewed Laplacian operator in the incompressible limit.

4



Currently, we take Mc = v IAM[, where u = 5

and AM is the two-point difference in Mach number

on an edge. For tile channel flow cases shox_m below, Me

never becomes larger than M. For the leading-edge flow,

the cutoff does become active at the stagnation point.

When Me > 3/I, it is necessary to add additional dissi-
h

patton to the advection operator qHo. Tile form of this

dissipation is a five-point pseudo-Laplacian,

1 c( (0_ + 0_), (16)
d_p = _max(0, Mc-M) 7

where J is the Jacobian of tile coordinate transforma-

tion. This operator is added to both the entropy and the

momentum equation, as_d is cast in flux form in order to

maintain conservation. No at tenq_t ha._ been made to

optimize either the coefficient v or the form of the oper-

ator d_p.

As wilt.ten, the Eq. (14) is valid only for subsonic

flows. This is because tile pressure differences in the

artificial dissipation terms are not. fully upwinded in a

supersonic zone. A simple modification to Eq. (14) can

be made by rescaling the gradients of the pressure when

the flow becomes sonic. Introducing the parameter n,

defined as

=max(l, M2), (17)

the final form of the scheme is

h
q s - d_ps = O, (18a)

qhl(,a -- d_p_ + V,,D_,, + _lvhp
P

O'm(_Th (pc2_72"_-I- _"u'_rep)2pc" = o, (lSb)

pC2_Th. ([ + ff._rhp

)-peT,,,.._u. o_+_ +v_ p =o. (18e)

Because the difference equations (14a), (14b)

and (14c), can be written as a central difference part

plus a dissipation, it is straightforward to obtain a con-

servative discretization. The conservation form of the

Euler equations are diseretized using a central-difference

finite-volume approximation,

Vh-(pa) = 0, (19a)

l_rh.(pff_) + vhp = 0 .... (19b)

v_.[(p_ +v)a] = 0 (19e)

where e = a.ff/2 + P/(O(_ - 1)) is the total energy.

The dissipative fluxes on each cell face are computed

in terms of (s, u,v,p) using the appropriate difference

operators in Eq. (14). The artificial dissipation in

Eqs. (14b) and (14c) can be rewritten as

1 _ h
+V,_ h . ,

This is a conservative form of the dissipation cast in

terms of the primitive variables. The terms inside the

square bracket in Eqs. (20) and (21) are now interpreted

as dissipative fluxes. These terms are discretized on cell

faces according to the appropriate wide or narrow differ-

ences. The first-order upwind advection operator @ and

the antidissipative terms /_h(/_,9) in Eq. (20) may be

recast in conservation form and evaluated on cell faces.

The length scale ( is evaluated on the cell face by tak-

ing min((e¢, g,1), the shortest length in each grid direction.

The scaling coefficients a,,, and o-v are evaluated using

the Mach number on the face.

In addition to the dissipation terms, examination of

Eqs. (14b) and (14e) shows that. the pressure gradi-

ent terms are discretized using the wide stencils. The

central-difference part of the conservation equations (19)

must be corrected to account for these wide differences.

This is done by adding a term to the dissipative fluxes

for the momentum and pressure equations as follows:

p

Once the dissipative fluxes (Ss, 5u, Jr, 5p) have been eval-

uated, they are converted to the conservation variables

by the transformation

I -P"I" p o ,,/d] ,_.
L_o_'i = I -p,,Is o ,,lal _,, "

0,, h/cV \41
(24)

where h = e + p/p is the total ent.halpy.

Solution Procedure

The solution of the discrete equations is performed us-

ing a symmetric point collective Gauss-Seidel iteration,

which has been found t.o be a very effective smoother.

The grid point.s are ordered such that. the forward Gauss-

Seidel sweep is in the streamwise direction. This means

that the entropy equation is marched in space during the

forward sweep. The reverse Gauss-Seidel sweep is under-

relaxed with a factor of 0.5 for stability. The residuals

of the conservation equations (r¢,, ro,, ro,,, rp_) are com-

puted at each vertex using the discretization presented

in the previous section. These residuals are then trans-

formed to the residuals of the primitive variables by the

inverse of the transformation in Eq. (24).
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Figure 1. Channel geometry.

At each point, the update to tile solution is given by

Au r, (25)
M Av = - r,,

Ap ,,_ rv i,3

where M is the matrix of coefficients of the primitive

variables at. vertex (i,3). The coefficients are found by

collecting the contributions to vertex (i, j) from the dissi-

pation terms on the four surrounding faces. Because the

entropy equation decouples froln the rest of the system,

this is a block diagonal matrix where the upper block is

the upper left-hand entry, and the lower block is a 3 × 3

matrix of coefficients multiplying u,.j, v,,j, and p,,j. This

matrix is easily inverted.

The relaxation is accelerated using a standard Full-

Approximation Scheme (FAS) multigrid. A sequence of

grids G_c, Gt_-1, .. • , Go is used, where G1c is the finest
and Go the coarsest. Let Lk-l be the coarse grid oper-

ator, u be the vector of the conservation variables, I__,

be the fine-to-coarse grid restriction operator, and I_-'

be the coarse-to-fine grid prolongation operator. If fik is

the current solution on grid k, the residual on this grid

is rk = fk - Lkfik. This is the residual of the conserva-

tion equations, not the prinfitive equations. This leads

to the coarse-grid equation

= = + (2G)

After solving the coarse-grid equation for Uk-!, the fine-

grid solution is corrected by

+ (27)

Equation (26) is solved by applying the same relaxation

procedure that is used to solve the fine-grid equation.

Multigrid is applied recursively to the coarse-grid equa-

tion. On the coarsest grid, many relaxation sweeps are

performed to insure that the equation is solved com-

pletely. A conventional Iz cycle or H-cycle is used.

Results

Solutions are shown for compressible flow- in a two-

dimensional channel, the geometry of which is shown in

Pig. 1. The shape of the lower wall between 0 < z < 1

is y(z) = r sin 2 rrx. For the computations shown here,
the thickness ratio r is 0.05. The grid spacing is uniform

in the x-direction, and the coordinates in/.he y-direction

are found using a simple shearing transformation.

1
1

\

Figure 2. /vlach number contours for a M = 0.5

inlet, contour increment AM = 0.0I, for a 385 × 129

grid.

At the inflow boundary the entropy, total enthalpy

and flow angle are specified, and the pressure-is extrapo-

lated from the interior. The outflow boundary condition

is a specified pressure and s, u and v are extrapolated

from the interior. At the upper and lower walls of the

channell the flow tangency condition tT-fi = 0 is enforced

by setting the residual of the momentum equation nor-

mal t.o the wall to zero. Because of the wide stencils the

dissipation terms on the wall are evaluated using a row

of ghost vertices. The pressure is extrapolated to those

vertices using the normal momentum equation. The en-

tropy and total enthalpy at the ghost, vertices are set to

the values on the wall, and the normal component of the

velocity is reflected from the interior.

Solutions are obtained using a FMG cycle to initial-

ize the solution. A solution is computed on the coarsest

grid and prolonged to the next grid to ohtaln a starting

solution for that grid. This procedure is continued re-

cursively until the finest grid is reached. On each grid,

a IS(l, 1) multigrid cycle is used to solve the system.

Five multigrid cycles are run on each of the coarse grids,

and fifteen cycles are run on the finest grid. After each

symmetric Gauss-Seidel relaxation sweep, an additional

three streamwise sweeps are done on the wall and its

neighboring row" of vertices.

Mach contours are seen in Fig. 2 on a 385 × 129 fine

grid for an inlet Mach number of 0.5. The solution

is symmetric except for a glitch at the outflow bound-

ary, which is caused by specifying uniform pressure at

the outflow boundary. Convergence rates are shown in

Fig. 3. A total of 7 grids is used, the coarsest being 7 × 3.

The residual levels are renormalized aft.er each prolonga-

tion to the next finest, grid, and on the coarsest grid

several relaxation sweeps are performed, giving essen-

tially a direct solve on that grid. The convergence rate

on the finest grid is initially 0.25 per 1"(1, 1) cycle, and

the asymptotic rate is 0.38 per cycle. The residual re-

duction over 5 cycles is seen to be the same on each grid,

showing that the convergence rate is O(n). The drag on

the lower wall and the rms error in the entropy over the

computational domain are shown in Fig. 4. On the finest
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Figure 3. Convergence rates for a M = 0.5 inlet, flow

using a FMG cycle with a 385 x 129 fine grid.

grids both are converged after essentially two multigrid

cycles.

The drag and entropy appear to be exhibiting bet-

ter than first-order accuracy but not quite second-order

accuracy. On the finer grids, the error decreases by ap-

proximately one-third with the halving of the grid spac-

ing. The entropy error decreases by about 0.28 on the

finest grids, while the drag is reduced by about 0.35.
These values are somewhat sensitive to the choice of the

wall boundary condition. Curiously, when simple reflec-

tion boundary conditions are used, the drag converges

better than second order, dropping by a factor of six

to eight with each grid refinement. Neither the drag

nor the entropy is very sensitive to whether a first-order

or a second-order advection operator is used in either

Eq. (18a) or Eq. (181)). This is because the flow is a

potential flow, and the factorizability of the scheme de-

couples the entropy and vorticity advection from the po-

tential factor of the operator. Given that s and _0 are

identically zero analytically, first-order advection is per-

fectly adequate.

To demonstrate that the factorizable scheme requires

no special preconditioning to handle very low Mach num-

bers, a solution for an inlet Mach number of 10 -4 is

shown in Figs. 5, 6 and 7. Because the ratio of the

dynamic pressure to the static pressure is 0(_I2), the

relative roundoff error is much larger for this case than

for the higher Mach number cases, so the residuals bot-

t.om out at a higher level. The initial convergence rate

is 0.24 per cycle, very close to that for the Mach num-

ber 0.5 case. As with the higher Mach mnnber case,

the convergence rate is O(n). The solution is seen to

be very symmetrical at the bump, with some boundary

layer beha_ior at the inflow and the same behavior at

the outflow as for the the higher Mach number. The
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Figure 4. Convergence of the [-2 entropy error and

drag on the lower wall for a M = 0.5 inlet flow using

a FMG cycle with a 385 × 129 fine grid.

drag and entropy errors converge within two cycles on

the finest grids.

Mach contours, residual convergence and the drag and

entropy are shown in Figs. 8, 9 and 10 for an inlet Mach

number of 0.73, which corresponds to a supercritical inlet

Mad_ number. The peak Mach number before the shock

is approximately 1.2. The rate of residual reduction is

initially about 0.53 per cycle on the 385 x 129 fine grid,

and the asymptotic rate is 0.68. The drag and entropy

take longer to converge than for the subcritical c_es,

and in fact they have not converged on any of the coarse

grids before the solution is interpolated to the next. finer

grid. On the finest grid, the drag and entropy converge

in about eight cycles.

All the solutions shown so far do not have a stagna-

tion point. In earlier work, the pressure Poisson scheme

of Robert.s, Sidilkover and Swanson 5' 6 exhibited a de-

terioration in the convergence rate for flows containing

a stagnation point 11. The current scheme does not stif-

fer from this difficultly. A solution was obtained for the

flow about the leading edge of a semi-infinite parabolic

body, shown in Fig. 11. For this case, Dirichlet boundary

conditions were used at the far-field, where the velocity

field was taken from the incompressible solution given by

a conformal mapping around the body. The freest.ream

entropy was specified, and a uniform total enthalpy was

computed by taking the fi'eestream Mach number equal

to 0.1. A fine grid of 129 x 129 grid points was computed

fi'om the conformal mapping, and 6 grid levels were used.

In the symmetric Gauss-Seide] relaxation, it was neces-

sary to underrelax the streamwise sweep with a factor

of 0.9 for stability. The wall boundary conditions were

simple reflection of the velocity, entropy and pressure.

Pressure coefficient contours are shown Fig. 12, and
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Figure5. Machnumbercontoursfor a M = 10 -4

inlet, contour increment AM = 2 x 10 -6, for a 385 x

129 grid.
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Figure 6. Convergence rates for a 2_'[ = 10 -4 inlet

flow using a FMG cycle with a 385 × 129 fine grid.

are seen to be symmetric about the axis of the parabola.

Convergence rates are shown in Fig. 13. Unlike tile chan-

nel flow, the convergence rates are not quite O(n), be-

coming slightly slower on finer grids. This is because

of the underrelaxation of the streamwise Gauss-Seidel

sweep, which prevents the advection factor from being

solved in that sweep. The asymptotic convergence rate

on the finest grid is approximately 0.50 per cycle. The

entropy error, Fig. 14, is seen to converge as well as for

the channel flow, with a reduction of around one-third

with each grid doubling.

Conclusions

A factorizable discretization of the compressible Eu-

ler equations on general curvilinear body-fitted grids has

been presented. The discretization is based on the mul-

tidimensional upwind scheme of Sidilkover, and can be

written in a form that is closely related to conventional

upwind-differenced finite-volume schemes. Unlike con-

ventional schemes, this discretization lends itself to an

extremely efficient multigrid solution procedure. The

factorizability of the scheme has the property that the

correct incompressible limit of the compressible equa-

tions is obtained without the need for any special pre-

conditioning. Because the scheme is stable for Gauss-

Seidel relaxation, fast convergence may be obtained for

essentially incompressible flow as well as high subsonic

Mach numbers. This discretization unifies compressible

and incompressible flow algorithms.
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Appendix: Discretization of DH¢_

The diseretization of the derivatives in the expression

for DHO, given in Eqs. (13) must be done in a very. precise

was so as to preserve the factorizability of the discrete

scheme. In Ref. 12, Sidilkover presents these expres-

sions for a uniform Cartesian grid. The particular case

of I/.771> ]_7"1is presented here. In this case, DHo is given

by Eq. (13a), repeated here for convenience.

Duo =-- O + lsgn(; _" (OJ2 + _¢_')

The term D has already been discussed in the Discretiza-

tion section, and what remains is 0,1/_, 0_' and 0_'

above. Each of these terms is discretized differently on

a _-cell edge, (i + 1/2, j), and an ,t-cell edge, (i, j + 1/2),

where i and j are the indices of the vertices in the _ and *1

directions, respectively.

Consider the _-cell edge, (i+1/2, j). First. we take U >

0, 17_> 0, in which case the following difference formulas

are used.

(o,,, -

1 (_.,. + _. _ f._,,. _ 9_-_,_-,),

• h -, l
o,, v = _ (_',_,,,+, - V,_l,,_, ).

Second, take U > 0, V < 0.

h- 1
a.u = 7 (&,j+_ - &,,),

1 (>,_, r.'__,,._,)

Third, take,

.h- l

O,U = 97
1

1
o2v = 97

U<O,_'>O.

(lgi+,o - 1Ai+to-_) ,

(Pi+2,j + "9,+2,j-1 - P,+l,_ - 13',+l,_-i ),

( _/'i+ 2,3q_ l -- "171__2,3__1) .

Fourth, take (r < 0, 17"< 0.

1

(90h/_ = _ (/_/+l,j+2 -- a/+l,3 ),

1 ;, c, c, 9i+1,3)0_'P = _ (L+2,_+_ + L+2,_ - I;,+_,_+_ -
1

a._ = _ ff"+_,,+' - _,+_,,__).

Now consider the o-cell edge, (i,j + 1/2}. First we

take (Tr > 0, 1-"> 0, in which case the following difference

fornmlas are used.

Ohol_ = 21 (lli,j - ll,,j__ + _,__.a -/_,-_o-1) ,

1 (_i,j - "13',__,j) ,

-,_ah_'--= 971('_i-l,j+l--_i--l,3+_)i-";+l--_)i--2,3)

Second, take (r > 0, {-: < 0.

1

O_a _- 2 (l_i'Jq-2 -- U"3"_I -{- l_i--l'jq'2 -- /_t--l'3-}-I )'

1 (V_,,+_- P,-_j+_),=
1

_,_,_= -_(v,_,,.+_ - _',_,,. + 9___,,+, - P___,.)

Third, takc U" < 0, 17_> 0.

1
= (a,+,,, - u,+ + a,,, - a,,,_,),

1
a29 = - >,,,),
,hr, 1 r,
O,V = _ (_'_÷_,_÷_- _,'_+_,_+ V_÷_,,÷_- _;_+_,_)

Fourth, take (r < 0, 17"< 0.

0,,__ - = 971(&+_o+_- 0,+_,_+_ +0,o+z- &o+,)

| -,

4"v = 97(v,+2,,+1 - _',,,+,),
1

0._ ' = 97(_,+_,,+, - _',+_,. + 9,+_,.+, - _+,,,)

The above differences are also the ones used in the

definition of the second-order advection operator qno.

Analogous expressions may be developed for Eq. (lab),

corresponding to lf:l > [/?[.
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drag on the lower wall for a M = 10 -4 inlet flow

using a FMG cycle with a 385 × 129 fine grid.
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Figure 9. Convergence rates for a M = 0.73 inlet

flow using a FMG cycle with a 385 × 129 fine grid.

\

Figure 8. Mach number contours for a ,_I = 0.73

inlet, contour increment _,"ll = 0.025, for a 385 × 129

grid.
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Figure 10. Convergence of the L.. entropy error and

drag on the lower wall for a M = 0.7a inlet flow

using a FMG cycle with a 385 × 129 fine grid.
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Figure 13. Convergence rates for a M = 0.1 leading-

edge using a FMG cycle with a 129 x 129 fine grid.

Figure 11. Semi-infinite parabola, 33 × 33 grid.
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Figure 12. Pressure coefiicient contours around a

M = 0.1 leading-edge, increment AC' v = 0.05, for

a 129 × 129 grid.
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Figure 14. Convergence of the L2 entropy error for a

M = 0.1 leading-edge flow using a FMG cycle with

a 129 x 129 fine grid.
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